Gravitation

Massen zeihen sich gegenseitig an.

Aus astronomischen Beobachtungen der Planetenbewegungen kann das Gravitationsgesetz abgeleitet werden.

Von 1573-1601 sammelte Tycho Brahe mit bloßem Auge (ohne Fernrohr) sehr präzise Daten der Planetenbewegungen.

Tycho Brahe 1546 - 1601

Johannes Kepler hat mit Hilfe dieser Daten die Keplerschen Gesetze abgeleitet.

Kepler erkannte nicht das Gravitationsgesetz, das aus seinen Gesetzen abgeleitet werden kann.

Johannes Kepler 1571-1630

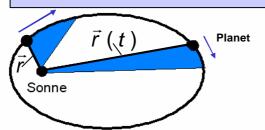
__

Drei Keplersche Gesetze:

Die Planetenbahnen sind Ellipsen, in deren einem Brennpunkt die Sonne steht.

Die Verbindungslinie r zwischen Sonne und Planet überstreicht in gleichen Zeiten gleiche Flächen. (Flächensatz)

Die Quadrate der Umlaufzeiten T zweier Planeten verhalten sich wie die dritten Potenzen der großen Halbachsen a ihrer Bahnen.



$$\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}$$

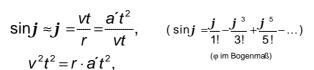
40

Ableitung des Gravitationsgesetzen aus Keplers 3 Gesetzen:

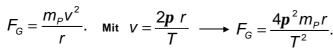
(1. und 2. Keplersches Gesetz: Annahme kreisförmiger Planetenbahnen,

d.h. Bahngeschwindigkeiten v und v´ sind betragsmäßig konstant.)

Während der Planet sich mit v auf der Bahn bewegt, "fällt" er unter dem Einfluß der Gravitation mit der Geschwindigkeit v' (Zentripetalbeschleunigung a') zum Zentralgestirn, v'= a't.



 $a' = \frac{V^2}{r}$. Zentripetalbeschleunigung als Folge der Gravitation.





Aus dem 3. Keplerschen Gesetz folgt:

$$\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}$$
 $\xrightarrow{\text{umformen}}$ $\frac{a_1^3}{T_1^2} = \frac{a_2^3}{T_2^2} = \text{const.}$

mit $F_G = -F_Z$ und $(a \rightarrow r)$:

$$F_Z = \frac{4p^2m_Pr}{T^2}$$
 erweitern $\xrightarrow{\text{erweitern}} \frac{-F_G \cdot r^2}{m_P} = \frac{4p^2r^3}{T^2} = \text{const.}$

folgt:

$$F_{\rm G} = -\frac{m_{\rm P} \cdot {\rm const.}}{r^2} = -\frac{M_{\rm S} \cdot {\it const.}}{r^2};$$
 $m_{\rm P}$: Planetenmasse, $m_{\rm S}$: Sonnenmasse.

Aufgrund des Reaktionsprinzips muß die Gravitationskraft auch proportional zur Sonnenmasse sein. Also folgt:

$$F_{G} = -G \frac{m_{P} \cdot M_{S}}{r^{2}} = \left(-G \frac{m_{1} \cdot m_{2}}{r^{2}}\right). \quad G = Gravitationskonstante$$

Ursprünglich fand Newton 1665 das Gravitationsgesetz aus folgender einfachen Abschätzung:

Ein Apfel, der vom Baum fällt, wird durch die Gravitation mit ca. 10 m/s² (g) beschleunigt.

Auf den Mond wirkt die Zentripetalbeschleunigung:

$$a_Z = \frac{V_{Mond}^2}{r_{Mondbahn}}.$$

 $a_Z = \frac{v_{Mond}^2}{r_{Mondbahn}}. \qquad \begin{array}{c} r_{Mondbahn} : 384\ 400\ km,\ (siderische) \\ Umlaufzeit:\ 27,32\ d,\ r_{Erde} = 6\ 378\ km. \end{array}$

Er wird demnach mit

$$a = \frac{v^2}{r} = 0.00273 \frac{m}{s^2}$$

Isaak Newton 1643 - 1727

beschleunigt.

Der Radius der Mondbahn verhält sich zum Radius der Erde wie ≈ 60 / 1. Die Beschleunigungen 10 m/s² zu 0.00273 m/s² verhalten sich wie ≈ 3 600 / 1

Daraus zog Newton den kühnen Schluß, daß $F \propto 1/r^2$

43

Messung der Gravitationskonstanten G

An der Erdoberfläche wird eine Masse m mit der Kraft

$$F_G = -G \frac{m \cdot m_{Erde}}{r^2}$$

angezogen. Der Erdradius ist direkt meßbar, nicht aber die Erdmasse.

Aus einer Messung dieser Kraft kann nur das Produkt $G \cdot m_{Erde}$ bestimmt werden.

Die Planetenmassen sind also nicht aus Planetenbewegungen herleitbar, da Massen der Sonne und der Planeten unbekannt ist.

Gravitationskonstante G ist nur meßbar, wenn beide beteiligten Massen separat ausgemessen werden können.

G ist die am wenigsten genau bekannte Naturkonstante.

$$G = 6.672 59 (85) \cdot 10^{-11} \text{ m}^3 / \text{kg s}^2$$

Versuch: Gravitationsdrehwaage nach Cavendish (1798) - Eötvös

Kraft zwischen den Massen m₁ und m₂

$$F_G = G \frac{m_1 \cdot m_2}{r^2}$$

Beschleunigung:

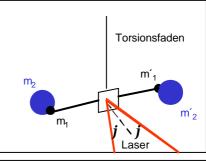
$$m_1 \cdot a = F_G = G \frac{m_1 \cdot m_2}{r^2}$$

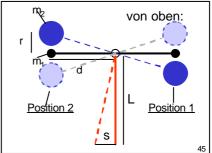
Wegen der Anfangsstellung von m_2 gegenüber m_1 :

$$a=2\cdot G \frac{m_2}{r^2}$$

Ablesen mit Laserzeiger (doppelter Winkel):

$$\frac{\Delta r}{d} = \frac{1}{2} \frac{s}{L}$$





Beschleunigte Bewegung:

$$\Delta r(t) = c \cdot t^2$$
 $c = \text{const.}$

Berechnung der Geschwindigkeit v(t)

$$v(t) = \frac{\mathrm{dr}}{\mathrm{d}t} = c \cdot 2t$$

Berechnung der Beschleunigung a(t)

$$a = \frac{dv}{dt} = c \cdot 2$$

Nach dem Zeitintervall T hat sich die Masse m_1 um die Strecke Δr bewegt.

$$\Delta r = \frac{a}{2} \cdot T^2$$

Auswertung des Experimentes:

$$\Delta r = \frac{a}{2} \cdot T^2 \longrightarrow a = \frac{2\Delta r}{T^2}$$

$$\frac{\Delta r}{d} = \frac{1}{2} \frac{s}{L} \longrightarrow \Delta r = \frac{1}{2} \frac{d}{L} s$$

Einsetzen ergibt:

$$a = \frac{ds}{T^2L}$$

durch Gleichsetzen mit

$$a = 2 \cdot G \frac{m_2}{r^2}$$

folgt

$$G = \frac{d s r^2}{2 m_2 T^2 L}$$

$$m_2 = 1.5 \text{ kg} \pm 1\%$$

$$r = 0.048 \text{ m} \pm 10\%$$

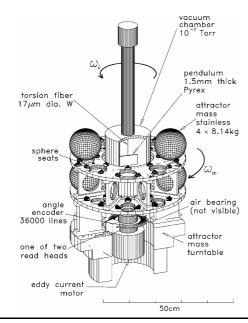
$$d = 0.05 \text{ m} \pm 5\%$$

$$L = 17,6 \, m$$

$$G =$$

47

Aktuelles Experiment: Meßwert $G = (6.6742 \pm 0.0001) 10^{-11} \text{ m}^3 / \text{kg s}$

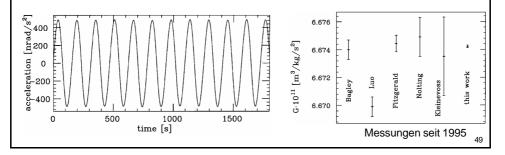


J.H.Gundlach et. al, Phys. Rev. Lett. 85, 2869 (2000)

40

Verspiegelte Glasplatte dreht sich zwischen vier Massen (8,14 kg \pm 3mg) Die Massen sind auf einem Drehtisch befestigt, der sich mit konst. ω_a dreht. Genaue Position der Glasplatte als Funktion von der Zeit wird gemessen. Daraus wird Beschleunigung berechnet.

Größte Ungenauigkeit ist die Präzision der Massenanordnung (± 1µm)



An der Erdoberfläche, d.h. im Alltagsleben, wird jede Masse im wesentlichen durch die Erde angezogen. → Erdanziehungskraft

Messung der Erdanziehungskraft:

Kraftmessung über Messung der Beschleunigung einer Probemasse Fallversuch:

$$F_{\rm G} = G \frac{m \cdot m_{\rm Erde}}{r^2} = m \cdot a$$

m kürzt sich heraus, d.h. alle Probemassen fallen gleich schnell. \rightarrow Versuch Ergibt die s.g. Fallbeschleunigung:

$$a = G \frac{m_{\text{Erde}}}{r^2}$$

Das Kürzen von *m* setzt etwas Grundlegendes voraus:

Träge Masse = Schwere Masse

Experimentelle Bestätigung mit rel. Genauigkeit < 10⁻¹¹

Messung der Fallbeschleunigung:

z.B. Messung der Fallzeit: (gleichmäßig beschleunigte Bewegung)

$$x(t) = \frac{a}{2}t^2$$

daraus Bestimmung von a. Erdbeschleunigung wird üblicherweise mit g abgekürzt. Mittlerer Wert: g = 9.81 m/ s^2

Demonstrationsversuch z.B. mit Fadenpendel \rightarrow wird später gezeigt (siehe Abschnitt: Schwingungen)

Präzisionsmessung mit Gravimeter:

Absolutbestimmung von *g* mit Fallversuch.

Ortsmessung x(t) wird mit Laserinterferometer und Atomuhr durchgeführt.

Auszählen der Interferenzringe als Funktion von der Zeit während des Fallens.

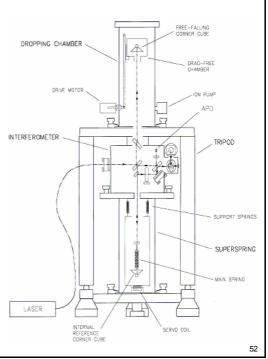
Zurückführung auf Ort- und Zeitmessung ergibt hohe Genauigkeit.

Relativer Fehler: 10⁻⁹

51

Absolutes Gravimeter:

Fallversuch im Hochvakuum Jod-stabilisierter HeNe-Laser Rubidium-Atomuhr



Beispiele für Variation der Fallbeschleunigung

Hamburg Flughafen: 9.8139443 m/s² Hannover Flughafen: 9.8128745 m/s² München Flughafen: 9.8072914 m/s² Rom Flughafen: 9.8034255 m/s²

Fallbeschleunigung wird beeinflußt durch: Erdabplattung, Zentrifugalbeschleunigung durch Erddrehung, Ebbe und Flut, Geologische Gegebenheiten Anwendung: z.B. Suche nach Öl, Erforschung von Magmafluß in Vulkanen

Berechnung der Erdmasse aus der Fallbeschleunigung

Bei kugelsymmetrischen Massen darf mit Punktmasse im Mittelpunkt gerechnet werden. (Mathematischer Beweis wird hier nicht gezeigt.)

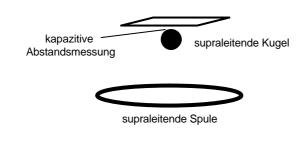
Erdradius: 6378 km (Äquator)

$$a = G \frac{m_{\text{Erde}}}{r^2_{\textit{Erde}}} \longrightarrow m_{\text{Erde}} = \frac{a r^2_{\textit{Erde}}}{G}.$$

 \rightarrow Erdmasse: 5.98 10²⁴ kg

53

Relative Gravimeter



Supraleitende Kugel schwebt über supraleitender Spule

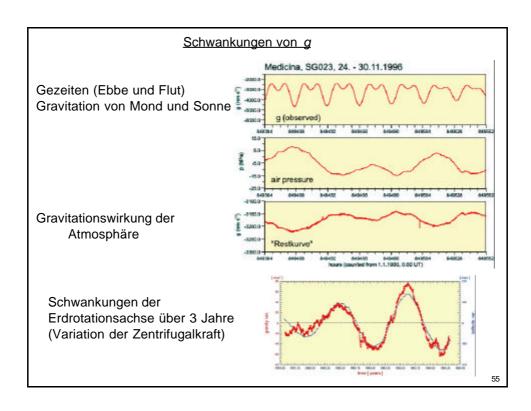
Abstoßendes Magnetfeld (Meißner-Ochsenfeld-Effekt)

Elektrische Ströme sehr konstant (ändern sich unmerklich in 100 000 Jahren)

Abstoßende Kraft viel konstanter als Erdanziehungskraft.

Kraftänderungen ändern die Position der schwebenden Kugel um wenige nm. Relative Empfindlichkeit für g: 10^{-11}

54



Präzise Kraftmessungen

Bei bekannter Erdbeschleunigung übt eine bekannte Probemasse eine sehr genau berechenbare Gewichtskraft aus.

Kraftmesser können mit solchen Gewichtsstücken geeicht werden.

Versuch (M16): Kräftemessung

Auswertung des Experimentes:

$$\Delta r = \frac{a}{2} \cdot T^2 \longrightarrow a = \frac{2\Delta r}{T^2}$$

$$\Delta r = \frac{a}{2} \cdot T^2 \longrightarrow a = \frac{2\Delta r}{T^2} \qquad m_2 = 1.5 \text{ kg} \qquad \pm 1\%$$

$$r = 0.048 \text{ m} \qquad \pm 10\%$$

$$\frac{\Delta r}{d} = \frac{1}{2} \frac{s}{L} \longrightarrow \Delta r = \frac{1}{2} \frac{d}{L} s \qquad d = 0.05 \text{ m} \qquad \pm 5\%$$

Einsetzen ergibt:

$$a = \frac{d s}{T^2 L}$$

durch Gleichsetzen mit

$$a = 2 \cdot G \frac{m_2}{r^2}$$

folgt

$$G = \frac{d s r^2}{2 m_2 T^2 L}$$

$$m_2 = 1.5 \text{ kg} \pm 1\%$$

$$r = 0.048 \, \text{m} \pm 10\%$$

$$d = 0.05 \text{ m} \pm 5\%$$

$$L = 17.6 \, \text{m}$$

$$s = 0,30 \text{ m}$$

$$T = 105 s$$

$$G_{expt} = 5.94 \cdot 10^{-11} \text{ m}^3/\text{ kg s}^2$$

(Derzeit gültiger Wert:
$$G = 6,6726... \cdot 10^{-11} \text{ m}^3/\text{ kg s}^2$$
)

Genauere Auswertung des Experiments mit der Drehwaage:

Ablenkung s (cm)	Zeit T (s)
0	0
5	41
10	57
15	72
20	84
25	95
30	105
S ³⁰ cm	

Aus:
$$G = \frac{dsr^2}{2m_2T^2L}$$
 folgt:

$$s = G \frac{2m_2 L}{dr^2} \cdot T^2 = a \cdot T^2.$$

Fitergebnis:

$$a = 2,785 \cdot 10^{-5} \frac{m}{s^2}$$
.

Daraus:

$$G = 6.076 \cdot 10^{-11} \frac{m^3}{kq \, s^2}$$
.